
Documentation

This application facilitates conducting the multiple price list task between pairs of

lotteries with fixed lottery outcomes and varying probabilities, as proposed by

Holt/Laury (2002), as an oTree application (Chen et al., 2016) in numerous dif-

ferent variants by simply altering the documented variables in config.py.

Please note that, starting with oTree version 1.2.x, the template Base.html

(in _templates/global) has been renamed to Page.html. If you wish to stick to

an older version, please replace {% extends "global/Page.html" %} by

{% extends "global/Base.html" %} in all HTML-templates in the app

folder.

Installation

To install the app to your local oTree directory, copy the folder “mpl” to your

oTree Django project and extent the session configurations in your set-

tings.py at the root of the oTree directory by something like

SESSION_CONFIG = [

 ...

 {

 ‘name’: ‘mpl’,

 ‘display_name’: “Multiple Price List (Holt/Laury)”,

 ‘num_demo_participants’: 1,

 ‘app_sequence’: [‘mpl’],

 },

 ...

]

Please note that global settings as REAL_WORLD_CURRENCY_CODE, USE_POINTS,

as well as SESSION_CONFIG_DEFAULTS (including participation_fee and

real_world_currency_per_point) are – as for all oTree apps – specified in

oTree’s settings.py rather than the application itself but do affect the display

of currency figures as well as the calculations of payoffs and amounts to pay.

Setup

To set up the task, the only thing to be done is to alter pre-defined variables in

the file config.py at the root of the app’s directory. Any combination of the var-

iables described below is operable. By that means, several different variations of

the task are easily implemented. The following variables can be specified:

lottery_•_• (decimal/currency fields):

lottery_a_lo, lottery_a_hi, lottery_b_lo, and lottery_b_hi deter-

mine the “low” and “high” outcomes for “Lottery A” and “Lottery B”, respective-

ly. Outcomes are identical for all choices and only probabilities of high and low

outcomes change. (Please note that the currency of payoffs displayed to sub-

jects is determined by the global settings of oTree in settings.py.)

num_choices (integer field):

Number of choices between “Lottery A” and “Lottery B”. As in Holt/Laury

(2002), num_choices determines the probabilities of high and low outcomes

of both lottery “A” and “B”: for num_choices being specified as x, the proba-

bility of outcome “high” is 1/x in the first choice, 2/x in the second, etc.

certain_choice (boolean field):

Defines whether a certain choice is included in the choice list or not. That is, if

certain_choice = True, the choice between lottery “A” and “B” with a

probability of 1 for the high outcome is included; if certain_choice =

False, the list only contains (num_choices – 1) binary decision pairs. Note,

however, that the probability of outcome “high” is set by num_choices, not by

(num_choices – 1).

one_choice_per_page (boolean field):

If one_choice_per_page = True, each single binary choice between “Lot-

tery A” and “Lottery B” will be rendered on a separate page. Technically, each

decision is separated into rounds, i.e. the first choice is made in round 1, the

second choice in round 2, etc. Accordingly, the dataset for download contains

num_choices rows, one for each round, for each subject with a single obser-

vation corresponding to the respective choice. If one_choice_per_page =

False, all num_choices pairs are displayed in a single table on one page.

random_order (boolean field):

If random_order = False, all num_choices binary decisions are listed in

ascending order of the probability of the high outcome; if random_order =

True, the ordering of binary decisions is randomized for display.

enforce_consistency (boolean field):

If enforce_consistency = True, subjects are enforced to answer the

choice list without preference reversals. That is, all “A” lotteries above a se-

lected option “A” and all “B” lotteries below a selected option “B” are automati-

cally checked (i.e., subject have to click two radio buttons at most). Therefore,

enforce_consistency = True implies a single switching point and there-

by imposes strict monotonicity of revealed preferences and enforces transitivi-

ty. Note that enforce_consistency = True is only implementable for sin-

gle-page choice lists in ascending order, i.e. if one_choice_per_page =

False and random_order = False.

percentage (boolean field):

In the classical task proposed by Holt/Laury (2002), probabilities are displayed

as fractions with the number of choices determining the denominator, which

can be achieved by specifying percentage = False. To render the proba-

bilities of outcome “high” as a percentage number, set percentage = True.

small_pies (boolean field):

To emphasize differences in probabilities, small_pies = True renders

smallish pie charts on the left of “Lottery A” and on the right of “Lottery B”, re-

spectively, in each row of the table listing the binary choices (see Figure 1 for

an example of the Holt/Laury (2002) parameterization with small_pies =

True). If small_pies = False, no graphical illustrations will be displayed.

large_pies (boolean field):

If one_choice_per_page = True, lotteries “A” and “B” can be rendered in

terms of large pie charts instead of verbal descriptions in tabular format (as for

instance applied by Hey/Orme, 1994). If large_pies = True, lotteries are

depicted as pie charts representing the probabilities with labels for the payoffs

(see Figure 2). Moreover, input is facilitated by replacing the radio buttons and

the “next” button by choice buttons for option “A” and “B” respectively.

Figure 1. Choice list with parameterization of Holt/Laury (2002) and options cer-

tain_choice = True, one_choice_per_page = False, random_order =

False, and small_pies = True.

Figure 2. Fourth choice from a choice list with parameterization of Holt/Laury

(2002) and options certain_choice = True, one_choice_per_page =

True, random_order = False, and large_pies = True.

progress_bar (boolean field):

A progress bar, optionally, allows for graphical highlighting of the subject’s ad-

vance within the task, in terms of how many decision have already been com-

pleted. If progress_bar = True and one_choice_per_page = True, a

progress bar is rendered; if progress_bar = False, no information with re-

spect to the advance within the task is displayed. Furthermore, information in

terms of "page x out of num_choices" (with x denoting the current decision) is

provided. Note that this variable does not affect the display of choices if all

choices are shown at once, i.e. if one_choice_per_page = False.

instructions (boolean field):

If instructions = True, a separate template Instructions.html is

rendered prior to the task in round one. If instructions = False, the task

starts immediately (e.g. in case of printed instructions). Please note that the

instructions included serve only exemplary purposes and need to be adjusted

to your settings in config.py.

results (boolean field):

Determines whether a results page summarizing game outcome is rendered

or not. If results = True, a separate view Results.html containing all

relevant information (i.e. the randomly picked lottery to be payed, the random-

ly determined outcome to pay, and the payoff) is rendered. If results =

False, no separate page is displayed.

References

Chen, D. L., Schonger, M., Wickens, C., 2016. “oTree – an open-source platform
for laboratory, online and field experiments”. Journal of Behavioral and Exper-
imental Finance 9, 88–97.

Hey, J. D., Orme, C., 1994. “Investigating generalizations of expected utility theo-
ry using experimental data”. Econometrica 62 (6), 1291–1326.

Holt, C. A., Laury, S. K., 2002. “Risk aversion and incentive effects”. American
Economic Review 92 (5), 1644–1655.

